(1)

\sim		
1.	$\frac{d}{dx}\tan^{-1}\left[\frac{\cos x - \sin x}{\cos x + \sin x}\right] =$	
	(a) $\frac{1}{2(1+x^2)}$	(b) $\frac{1}{1+x^2}$
	(c) 1	(d) – 1
2.	If $y = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\log(x)$	$(x + \sqrt{x^2 + a^2})$, then $\frac{dy}{dx} =$
	(a) $\sqrt{x^2 + a^2}$	(b) $\frac{1}{\sqrt{x^2 + a^2}}$
	(c) $2\sqrt{x^2 + a^2}$	(d) $\frac{2}{\sqrt{x^2 + a^2}}$
3.	If $y = \cot^{-1}(\cos 2x)^{1/2}$, the	In the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$
	will be	
	(a) $\left(\frac{2}{3}\right)^{1/2}$	(b) $\left(\frac{1}{3}\right)^{1/2}$
	(c) $(3)^{1/2}$	(d) (6) ^{1/2}
4.	If $f(x + y) = f(x) \cdot f(y)$ for a	all x and y and $f(5) = 2$,
	f'(0) = 3 , then f'(5) will b	е
	(a) 2	(b) 4
	(c) 6	(d) 8
5.	If $xe^{xy} = y + \sin^2 x$, then a	at $x = 0, \frac{dy}{dx} =$
	(a) –1	(b) – 2
	(c) 1	(d) 2
6.	If $u(x, y) = y \log x + x \log y$, t	then
	$u_x u_y - u_x \log x - u_y \log y + \log y$	og x log y =
	(a) 0	(b) –1
	(c) 1	(d) 2
7.	If $y = f\left(\frac{2x-1}{x^2+1}\right)$ and $f'(x) =$	$=\sin x^2$, then $\frac{dy}{dx} =$
	(a) $\frac{6x^2 - 2x + 2}{(x^2 + 1)^2} \sin\left(\frac{2x - 1}{x^2 + 1}\right)$	$\left(\frac{1}{2}\right)^2$
	(b) $\frac{6x^2 - 2x + 2}{(x^2 + 1)^2} \sin^2\left(\frac{2x - 2x}{x^2 + 1}\right)$	$\left(\frac{-1}{-1}\right)$
	(c) $\frac{-2x^2+2x+2}{(x^2+1)^2}\sin^2\left(\frac{2x}{x^2}\right)$	$\left(\frac{x-1}{x+1}\right)$
	(d) $\frac{-2x^2+2x+2}{(x^2+1)^2}\sin\left(\frac{2x}{x^2+1}\right)$	$\left(\frac{-1}{1}\right)^2$
8.	The focal distance of	a point on the parabola
	$y^2 = 16x$ whose ordinate	is twice the abscissa, is
	(a) 6	(b) 8
	(c) 10	(d) 12

nstitut	e.com TARA/	NDA-NA/Mathematics/06	
9.	The co-ordinates of the rectum of the parabola 5y		
	(a) (1/5, 2/5), (-1/5, 2/5)		
	(b) (1/5, 2/5), (1/5, -2/5)		
	(c) $(1/5, 4/5), (1/5, -4/5)$		
	(d) None of these		
10.		the foci of the ellipse	
	$3x^2 + 4y^2 = 48$ is		
	(a) 2	(b) 4	
	(c) 6	(d) 8	
11.	The equation of the ellipse	e whose vertices are (±5, 0)	
	and foci are $(\pm 4, 0)$ is		
	(a) $9x^2 + 25y^2 = 225$	(b) $25x^2 + 9y^2 = 225$	
		(d) None of these	
12.	If the length of the transve	rse and conjugate axes of a	
	hyperbola be 8 and		
		ces of any point of the	
	hyperbola will be		
° .	(a) 8	(b) 6 (d) 2	
13.	(c) 14 If $(0, \pm 4)$ and $(0, \pm 2)$ be	the foci and vertices of a	
15.	hyperbola, then its equation		
		2	
	(a) $\frac{x^2}{4} - \frac{y^2}{12} = 1$	(b) $\frac{x^2}{12} - \frac{y^2}{4} = 1$	
	(c) $\frac{y^2}{4} - \frac{x^2}{12} = 1$	(d) $\frac{y^2}{12} - \frac{x^2}{4} = 1$	
14.	The value of $\begin{pmatrix} 30\\0 \end{pmatrix} \begin{pmatrix} 30\\10 \end{pmatrix} - \begin{pmatrix} 30\\30\\10 \end{pmatrix} = \begin{pmatrix} 30\\30\\30\\30 \end{pmatrix} = \begin{pmatrix} 30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\3$	$ \begin{array}{c} 30\\1 \end{array} \begin{pmatrix} 30\\11 \end{pmatrix} $	
	(30)(30)	(30)(30)	
	$+ \begin{pmatrix} 30\\2 \end{pmatrix} \begin{pmatrix} 30\\12 \end{pmatrix} + \dots$	(+(20))(30)	
	(a) ${}^{60}C_{20}$	(b) ${}^{30}C_{10}$	
	(C) ${}^{60}C_{30}$	(d) ⁴⁰ C ₃₀	
15.	Middle term in the expans	ion of $(1 + 3x + 3x^2 + x^3)^6$ is	
	(a) 4 th	(b) 3 rd	
	(c) 10 th	(d) None of these	
16.	Let $A = \{a, b, c\}$ and	$B = \{1, 2\}$. Consider a	
	relation <i>R</i> defined from equal to set	set A to set B. Then R is	
	(a) A	(b) <i>B</i>	
	(c) $A \times B$	(d) $B \times A$	

* TARA

=

2)	<u>www.</u>	tarainstitut	te.in	TARA/NDA-NA/Mathematics/
17.	Let $n(A) = n$. Then the	ne number of all relations on A		(a) $^{2m+3}C_3$	
	is			(b) $\frac{1}{3}(m+1)(2m)$	$(^{2} + 4m + 1)$
	(a) 2 ⁿ	(b) $2^{(n)!}$		3 (11) (11	· · · · · · · · · · · · · · · · · · ·
	(c) 2^{n^2}	(d) None of these		(c) $\frac{1}{3}(m+1)(2m)$	² + 4 <i>m</i> + 3)
18.		a finite set A having <i>m</i> elements		(d) None of the	
	of relations from A to	g <i>n</i> elements, then the number	24		
	(a) 2^{mn}	(b) 2 ^{mn} – 1	20.		pots of $x^2 + px + q = 0$ and $\alpha + h, \beta - q$
	(a) 2 (c) 2mn	(d) m^n			$x^2 + rx + s = 0$, then
19		elation on a finite set A having		(a) $\frac{p}{q} = \frac{q}{q}$	(b) $2h = \left[\frac{p}{q} + \frac{r}{s}\right]$
		here be m ordered pairs in R .			E. 2
	Then	,			$-4s$ (d) $pr^2 = qs^2$
	(a) <i>m</i> ≥ <i>n</i>	(b) <i>m</i> ≤ <i>n</i>	27.		o is the quadratic equation who
	(C) <i>m</i> = <i>n</i>	(d) None of these			and $b - 2$ where <i>a</i> and <i>b</i> are the ro
20.	The relation R defined	I on the set $A = \{1, 2, 3, 4, 5\}$		of $x^2 - 3x + 1 = 0$ (a) $p = 1, q = 5$	(b) $p = 1, q = -5$
	by				
	$R = \{(x, y) : x^2 - y^2 $	<16} is given by		(c) $p = -1, q = 1$	
	(a) {(1, 1), (2, 1), (3,		28.		for which one root of the quadra $5a+3$) $x^{2} + (3a-1)x + 2 = 0$ is twice
	(b) {(2, 2), (3, 2), (4,			large as the othe	
	(c) {(3, 3), (3, 4), (5,	4), (4, 3), (3, 1)}			â
~ 1	(d) None of these			(a) $\frac{2}{3}$	(b) $-\frac{2}{3}$
21.	If the set A has p ele the number of elemen	ments, <i>B</i> has <i>q</i> elements, then ts in $A \times B$ is		(c) $\frac{1}{2}$	(d) $-\frac{1}{3}$
	(a) $p+q$	(b) $p+q+1$	29.	If a,b,c are	in G.P., then the equation
		(d) p^2	27.		and $dx^2 + 2ex + f = 0$ have
1 1	(c) pq				
22.	If $A = \{a, b\}, B = \{c, d\}, C$			common root if	
	$\{(a,c),(a,d),(a,e),(b,c),(b,c),(b,c),(b,c),(b,c),(b,c),(b,c),(b,c),(b,c),(b,c),(c,$			(a) A.P.	(b) G.P.
	(a) $A \cap (B \cup C)$		20	• •	(d) None of these f 'a' for which the equation
	(c) $A \times (B \cup C)$	(d) $A \times (B \cap C)$	30.		and $x^2 + ax - 3 = 0$ have a comm
23.	$(P, Q and R are sub Q^c)^c =$	sets of a set A, then $R \times (P^c \cup$		root is	
	(a) $(R \times P) \cap (R \times Q)$	b) (b) $(R \times Q) \cap (R \times P)$		(a) 3	(b) 1
	(c) $(R \times P) \cup (R \times Q)$	(d) None of these	21	(c) -2	(d) 2
24.		ifferent combinations of one or	31.	If $(x+1)$ is a fact	
24.		n be made from the letters of		(a) 4 $(p-3)x^2 - (x-3)x^2 = 0$	$(3p-5)x^2 + (2p-7)x + 6$, then $p =$ (b) 2
	the word 'MISSISSIPP			(c) 1	(d) None of these
	(a) 150	(b) 148	32.	The roots of the	
	(c) 149	(d) None of these		$4x^4 - 24x^3 + 57$	$x^2 + 18x - 45 = 0$,
25.	A person goes in for	an examination in which there		If one of them is	$3 3 + i\sqrt{6}$, are
		a maximum of <i>m</i> marks from		(a) $3 - i\sqrt{6} + \sqrt{3}$	(b) $3 - i\sqrt{6} + \frac{3}{3}$
		ber of ways in which one can		$\sqrt{2}$	(b) $3 - i\sqrt{6}, \pm \frac{3}{\sqrt{2}}$ (d) None of these
	get 2m marks is			(c) $3 - i\sqrt{6} + \sqrt{3}$	- (d) None of these
				$(0) 3 = 1, 0, \pm 2$	

The values of for If P and Q be the middle points of the sides BC and 33. а which 41 $2x^{2} - 2(2a+1)x + a(a+1) = 0$ may have one root less *CD* of the parallelogram *ABCD*, then $\overrightarrow{AP} + \overrightarrow{AQ} =$ than a and other root greater than a are given by (a) \overrightarrow{AC} (b) $\frac{1}{2}\overrightarrow{AC}$ (b) -1 < a < 0(a) 1 > a > 0(d) $\frac{3}{2} \overrightarrow{AC}$ (c) $a \ge 0$ (d) a > 0 or a < -1(c) $\frac{2}{3}\overrightarrow{AC}$ **34.** Let a,b,c be real numbers $a \neq 0$. If α is a root **42.** P is a point on the side BC of the \triangle ABC and Q is a $a^2x^2 + bx + c = 0$, β is a root of $a^2x^2 - bx - c = 0$ and point such that \overrightarrow{PQ} is the resultant of $\overrightarrow{AP}, \overrightarrow{PB}, \overrightarrow{PC}$. $0 < \alpha < \beta$, then the equation $a^2 x^2 + 2bx + 2c = 0$ has a Then ABQC is a root γ that always satisfies (a) Square (b) Rectangle (a) $\gamma = \frac{\alpha + \beta}{2}$ (b) $\gamma = \alpha + \frac{\beta}{2}$ (c) Parallelogram (d) Trapezium In the figure, a vector **x** satisfies the equation 43. (C) $\gamma = \alpha$ (d) $\alpha < \gamma < \beta$ $\mathbf{x} - \mathbf{w} = \mathbf{v}$. Then $\mathbf{x} =$ **35.** The solution of the differential equation $x \frac{d^2 y}{dx^2} = 1$, given that y = 1, $\frac{dy}{dx} = 0$ when x = 1, is (a) $y = x \log x + x + 2$ (b) $y = x \log x - x + 2$ (C) $y = x \log x + x$ (d) $y = x \log x - x$ **36.** The solution of the differential equation $\frac{d^2y}{dx^2} = -\frac{1}{x^2}$ (a) 2a + b + c(b) **a** + 2**b** + **c** (c) **a** + **b** + 2**c** (d) **a** + **b** + **c** 44. A vector coplanar with the non-collinear vectors a (a) $y = \log x + c_1 x + c_2$ (b) $y = -\log x + c_1 x + c_2$ and **b** is (c) $y = -\frac{1}{x} + c_1 x + c_2$ (d) None of these (a) **a**×b (b) **a** + **b** (d) None of these (c) a.b 37. The solution of the differential equation $\cos^2 x \frac{d^2 y}{dv^2} = 1$ is If ABCD is a parallelogram, $\overrightarrow{AB} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ and 45. $\overrightarrow{AD} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, then the unit vector in the direction (a) $y = \log \cos x + cx$ (b) $y = \log \sec x + c_1 x + c_2$ of BD is (c) $y = \log \sec x - c_1 x + c_2$ (d) None of these (a) $\frac{1}{\sqrt{69}}$ (i + 2j - 8k) (b) $\frac{1}{69}$ (i + 2j - 8k) **38.** The solution of $\frac{d^2y}{dx^2} = \sec^2 x + xe^x$ is (c) $\frac{1}{\sqrt{69}}(-\mathbf{i}-2\mathbf{j}+8\mathbf{k})$ (d) $\frac{1}{69}(-\mathbf{i}-2\mathbf{j}+8\mathbf{k})$ (a) $y = \log(\sec x) + (x - 2)e^{x} + c_1x + c_2$ (b) $y = \log(\sec x) + (x + 2)e^{x} + c_1x + c_2$ 46. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors, such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, (C) $y = \log(\sec x) - (x + 2)e^{x} + c_1x + c_2$ |a| = 1, |b| = 2, |c| = 3, then a.b + b.c + c.a is equal to (d) None of these (a) 0 (b) - 7 **39.** If $\frac{d^2y}{dx^2} = 0$, then (c) 7 (d) 1 (b) $y^2 = ax + b$ 47. A unit vector which is coplanar to vector $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ (a) y = ax + band $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and perpendicular to $\mathbf{i} + \mathbf{j} + \mathbf{k}$, is (d) $y = e^x + c$ (c) $y = \log x$ (b) $\pm \left(\frac{\mathbf{j}-\mathbf{k}}{\sqrt{2}}\right)$ (a) $\frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}$ **40.** If $\frac{d^2y}{dx^2} + \sin x = 0$, then solution of the differential (c) $\frac{\mathbf{k}-\mathbf{i}}{\sqrt{2}}$ (d) $\frac{i+j+k}{\sqrt{2}}$ equation is. (a) $\sin x + c_1 x + c_2$ (b) $\cos x + c_1 x + c_2$ **48.** If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ then a value of λ for which $\mathbf{a} + \lambda \mathbf{b}$ (d) $\log \sin x + c_1 x + c_2$ (c) $\tan x + c_1 x + c_2$ is perpendicular to $\mathbf{a} - \lambda \mathbf{b}$ is

* TARA

3

TARA/NDA-NA/Mathematics/06

TARA/NDA-NA/Mathematics/06 4 www.tarainstitute.in Probability that a student will succeed in IIT entrance 55 (a) (b) 16 test is 0.2 and that he will succeed in Roorkee entrance test is 0.5. If the probability that he will be (C) (d) successful at both the places is 0.3, then the **a**, **b** and **c** are three vectors with magnitude $|\mathbf{a}| = 4$, probability that he does not succeed at both the 49. places is $|\mathbf{b}| = 4$, $|\mathbf{c}| = 2$ and such that **a** is perpendicular to (a) 0.4 (b) 0.3 $(\mathbf{b} + \mathbf{c})$, **b** is perpendicular to $(\mathbf{c} + \mathbf{a})$ and **c** is (c) 0.2 (d) 0.6 perpendicular to $(\mathbf{a} + \mathbf{b})$. It follows that $|\mathbf{a} + \mathbf{b} + \mathbf{c}|$ is If x co-ordinates of a point P of line joining the points 56. equal to Q(2, 2, 1) and R(5, 2, -2) is 4, then the z-coordinates of (a) 9 (b) 6 P is (c) 5 (d) 4 (b) -1 (a) - 2 50. A rifle man is firing at a distant target and has only (d) 2 (c) 1 10% chance of hitting it. The minimum number of The points A(5, -1, 1); B(7, -4, 7); C(1, -6, 10) and 57. rounds he must fire in order to have 50% chance of D(-1,-3,4) are vertices of a hitting it at least once is (b) 8 (a) 7 (a) Square (b) Rhombus (c) 9 (d) 6 (c) Rectangle (d) None of these If the integers *m* and *n* are chosen at random 51. 58. The distance of the point (2, 3, 4) from the line between 1 and 100, then the probability that a $1-x = \frac{y}{2} = \frac{1}{3}(1+z)$ is number of the form $7^m + 7^n$ is divisible by 5 equals (a) (b) (a) $\frac{1}{7}\sqrt{35}$ (b) $\frac{4}{7}\sqrt{35}$ 4 1 (c) (d) (c) $\frac{2}{7}\sqrt{35}$ (d) $\frac{3}{7}\sqrt{35}$ There are four machines and it is known that exactly 52. two of them are faulty. They are tested, one by one, 59. The angle between the straight lines is a random order till both the faulty machines are $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$ and $\frac{x+1}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$ is identified. Then the probability that only two tests are needed is (a) $\cos^{-1}\left(\frac{13}{9\sqrt{38}}\right)$ (b) $\cos^{-1}\left(\frac{26}{9\sqrt{38}}\right)$ (a) (c) $\cos^{-1}\left(\frac{4}{\sqrt{38}}\right)$ (d) $\cos^{-1}\left(\frac{2\sqrt{2}}{\sqrt{19}}\right)$ (c) Two persons A and B take turns in throwing a pair of 53. dice. The first person to through 9 from both dice **60.** The distance of the plane 6x - 3y + 2z - 14 = 0 from will be avoided the prize. If A throws first then the the origin is probability that B wins the game is (a) 2 (b) 1 (a) 17 (c) 14 (d) 8 8 The value of aa'+bb'+cc' being negative the origin will 61. (c)lie in the acute angle between the planes In four schools B_1 , B_2 , B_3 , B_4 the percentage of girls 54. an + by + cz + d = 0 and a' x + b' y + c' z + d' = 0, if students is 12, 20, 13, 17 respectively. From a school (a) a = a' = 0selected at random, one student is picked up at random and it is found that the student is a girl. The (b) d and d' are of same sign

(a) $\frac{6}{31}$ (b) $\frac{10}{31}$ (c) $\frac{13}{62}$ (d) $\frac{17}{62}$

probability that the school selected is B_{21} is

TARA

(c) d and d' are of opposite sign

(d) None of these

62. If $a = \cos(2\pi / 7) + i\sin(2\pi / 7)$, then the quadratic A tower subtends angles $\alpha_1 2\alpha_1 3\alpha$ respectively at 70. points A, B and C, all lying on a horizontal line equation whose roots are $\alpha = a + a^2 + a^4$ and through the foot of the tower. Then AB/BC = $\beta = a^3 + a^5 + a^6$ is $\sin 3\alpha$ (a) $x^2 - x + 2 = 0$ (b) $x^2 + x - 2 = 0$ (a) $sin 2\alpha$ (c) $x^2 - x - 2 = 0$ (d) $x^2 + x + 2 = 0$ (c) $2 + \cos 3\alpha$ **63.** Let z_1 and z_2 be n^{th} roots of unity which are ends of a line segment that subtend a right angle at the origin. Then *n* must be of the form (a) 4k + 1(b) 4k + 2(a) One solution (c) 4k + 3(d) 4k **64.** Let ω is an imaginary cube roots of unity then the 72. value of θ are $2(\omega + 1)(\omega^2 + 1) + 3(2\omega + 1)(2\omega^2 + 1) + \dots$ (a) 90°,60°,30° $+(n+1)(n\omega+1)(n\omega^{2}+1)$ is (c) 90°,45°,150° (a) $\left[\frac{n(n+1)}{2}\right]^2 + n$ (b) $\left[\frac{n(n+1)}{2}\right]^2$ (a) $\frac{\pi}{6}, \frac{7\pi}{6}$ (c) $\left[\frac{n(n+1)}{2}\right]^2 - n$ (d) None of these (c) $\frac{\pi}{3}, \frac{7\pi}{3}$ ω is an imaginary cube root of unity. If $(1 + \omega^2)^m =$ **65**. $(1 + \omega^4)^m$, then least positive integral value of *m* is 74. (a) 6 (b) 5 then $\theta =$ (d) 3 (c) 4 (a) 30°,45° **66.** If $a^x = b^y = c^z$ and a, b, c are in G.P. then x, y, z are (c) 135°,150° in (a) A. P. (b) G. P. (c) H. P. (d) None of these (a) 210°,300° **67.** If G_1 and G_2 are two geometric means and A the (c) 210°,240° arithmetic mean inserted between two numbers, then the value of $\frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$ is (a) $\sqrt{3} - 1$ (a) $\frac{A}{2}$ (b) A (c) $\sqrt{3} + 1$ (c) 2 A (d) None of these **68.** If $\log(x + z) + \log(x + z - 2y) = 2\log(x - z)$, then c is equal to x, y, z are in (a) 6 (a) H.P. (b) G.P. (c) 9 (c) A.P. (d) None of these 69. 20 metre high flag pole is fixed on a 80 metre high 78. pillar, 50 metre away from it, on a point on the base of pillar the flag pole makes and angle α , then the (a) 15° value of $tan\alpha$, is (C) 45° (b) $\frac{2}{21}$ (a)

(d) $\frac{21}{4}$ (c)

5

71. The equation $\sin x + \sin y + \sin z = -3$ for $0 \le x \le 2\pi$, $0 \le y \le 2\pi$, $0 \le z \le 2\pi$, has (b) Two sets of solutions (c) Four sets of solutions (d) No solution If $\sin 2\theta = \cos \theta$, $0 < \theta < \pi$, then the possible values of (b) 90°,150°,60° (d) $90^{\circ}, 30^{\circ}, 150^{\circ}$ **73.** If $2\sin^2\theta = 3\cos\theta$, where $0 \le \theta \le 2\pi$, then $\theta =$ (b) $\frac{\pi}{2}, \frac{5\pi}{2}$ (d) None of these If $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < 180^{\circ}$, (b) $45^{\circ}.90^{\circ}$

- (d) 30°,45°,90°,135°,150°
- **75.** Values of $\theta(0 < \theta < 360^{\circ})$ satisfying $\csc\theta + 2 = 0$ are (b) 240°,300°
 - (d) 210°,330°
- **76.** In a $\triangle ABC$, $b = 2, C = 60^{\circ}, c = \sqrt{6}$, then a =
- (b) $\sqrt{3}$ (d) None of these
- 77. In a $\triangle ABC$, a = 5, b = 4 and $\cos(A B) = \frac{31}{32}$, then side
 - (b) 7 (d) None of these
- In a $\triangle ABC$, if $A = 30^{\circ}$ $b = 2, c = \sqrt{3} + 1$, then $\frac{C-B}{2} =$
 - (b) 30°
- (d) None of these 79. The smallest angle of the triangle whose sides are
 - $6 + \sqrt{12}, \sqrt{48}, \sqrt{24}$ is
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$

TARA INSTITUTE

www.tarainstitute.com

TARA/NDA-NA/Mathematics/06

(b) $1 + 2\cos 2\alpha$

 $\sin 2\alpha$

 $\sin \alpha$

TARA/NDA-NA/Mathematics/06 www.tarainstitute.in 6 A string ABC has its extremities tied to two fixed 87. (c) $\frac{\pi}{6}$ (d) None of these points A and B in the same horizontal line. If a weight If $A = 30^{\circ}$, $c = 7\sqrt{3}$ and $C = 90^{\circ}$ in $\triangle ABC$, then a =W is knotted at a given point C_i , then the tension in 80. the portion CA is (where a, b, c are the sides and Δ is (b) $\frac{7\sqrt{3}}{2}$ (a) 7√3 the area of triangle ABC) (a) $\frac{Wb}{4c\Lambda}(a^2 + b^2 + c^2)$ (b) $\frac{Wb}{4c\Lambda}(b^2 + c^2 - a^2)$ (c) $\frac{7}{2}$ (d) None of these (c) $\frac{Wb}{4cA}(c^2 + a^2 - b^2)$ (d) $\frac{Wb}{4cA}(a^2 + b^2 - c^2)$ **81.** The maximum value of exp $(2 + \sqrt{3} \cos x + \sin x)$ is (b) $\exp(2-\sqrt{3})$ (a) exp(2)The resultant of three equal like parallel forces acting 88. (d) 1 (C) exp(4) at the vertices of a triangle act at its 82. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where (a) Incentre (b) Circumcentre a > 0 attains its maximum and minimum at p and q (c) Orthocentre (d) Centroid respectively such that $p^2 = q$, then a equals If the force acting along the sides of a triangle, taken 89. (a) 3 (b) 1 in order, are equivalent to a couple, then the forces (d) $\frac{1}{2}$ are (c) 2 (a) Equal **83.** The function $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$ is (b) Proportional to sides of triangle (c) In equilibrium (a) Increasing on $[0,\infty)$ (d) In arithmetic progression (b) Decreasing on $[0,\infty)$ If two like parallel forces of $\frac{P}{Q}$ Newton and $\frac{Q}{R}$ 90. (c) Decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right]$ Newton have a resultant of 2 Newton, then (d) Increasing on $\left[0, \frac{\pi}{e}\right]$ and decreasing on $\left[\frac{\pi}{e}, \infty\right]$ (a) P = Q(b) P = 2Q(c) 2P = Q(d) None of these 84. The equation to a circle whose centre lies at the point 91. A force of 35 kg is required to pull a block of wood (-2, 1) and which touches the line 3x - 2y - 6 = 0 at weighing 140 kg on a rough horizontal surface. The (4, 3), is coefficient of friction is (a) $x^2 + y^2 + 4x - 2y - 35 = 0$ (a) 1 (b) 0 (b) $x^2 + y^2 - 4x + 2y + 35 = 0$ (d) $\frac{1}{4}$ (c) 4 (c) $x^2 + y^2 + 4x + 2y + 35 = 0$ (d) None of these 92. A uniform ladder rests in limiting equilibrium, its lower end on a rough horizontal plane and its upper 85. The equation of a circle passing through the point (4, end against a smooth vertical wall. If θ is the angle of 5) and having the centre at (2, 2) is inclination of the ladder to the vertical wall and µ is the (a) $x^2 + y^2 + 4x + 4y - 5 = 0$ coefficient of friction, then $\tan\theta$ is equal to (b) $x^2 + y^2 - 4x - 4y - 5 = 0$ (a) μ (b) 2µ (c) $x^2 + y^2 - 4x = 13$ (c) $\frac{3\mu}{2}$ (d) µ + 1 (d) $x^2 + y^2 - 4x - 4y + 5 = 0$ 86. Two forces P and Q acting parallel to the length and **93.** $\sin\left\{\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2}\right\} =$ base of an inclined plane respectively would each of them singly support a weight W, on the plane, then (a) 0 (b) -1 (c) 2 (d) 1

 $\frac{1}{D^2} - \frac{1}{D^2} =$

Ρ	Q		
(a)	$1/W^{2}$	(b)	$2/W^{2}$
(c)	$3/W^{2}$	(d)	None of these

I A RA

 $\overline{7}$

\sim		
94.	$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} =$	
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$
	(c) $\frac{\pi}{4}$	(d) None of these
9 5.	$\sin^{-1} x + \cos^{-1} x$ is equal to)
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$
	(c) –1	(d) 1
96.	The range of $f(x) = \cos 2x$	- sin 2x contains the set
	(a) [2, 4]	(b) [-1, 1]
07	(c) [-2, 2]	(d) [-4, 4]
97.	Range of the function $\frac{1}{2}$	$\frac{1}{1}$ sin 3x
	(a) [1, 3]	(b) $\left[\frac{1}{3}, 1\right]$
	(c) (1, 3)	(d) $\left(\frac{1}{3}, 1\right)$
98.	$\lim_{x\to 0}\frac{3\sin x - \sin 3x}{x^3} =$	
	(a) 4	(b) -4
	(c) $\frac{1}{4}$	(d) None of these
99.	$\lim_{x \to 0} \frac{x^3}{\sin x^2} =$	
	(a) 0	(b) $\frac{1}{3}$
		-
	(c) 3	(d) $\frac{1}{2}$
100.	Which of the following sta	
	(a) A continuous function(b) An increasing function	
	(c) A continuous function	
	(d) A differentiable function	
101.	The function $f(x) = \frac{2}{x^2}$	$\frac{x^2+7}{3x^2-x-3}$ is discontinuous
	for	$3x^2 - x - 3$
	(a) $x = 1$ only	
	(b) $x = 1$ and $x = -1$ only	
	(c) $x = 1, x = -1, x = -3$ on	-
	(d) $x = 1, x = -1, x = -3$ and	
102.	Let $f(x) = \begin{cases} x^{p} \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$	then $f(x)$ is continuous but
	not differential at $x = 0$ if	
	(a) 0	(b) $1 \le p < \infty$
	(C) $-\infty$	(d) $p = 0$

stitute	e.com IARA/	NDA-NA/Mathematics/06
103.	A line $4x + y = 1$ passes the	nrough the point A(2, – 7)
	meets the line BC whose	equation is $3x - 4y + 1 = 0$
	at the point B. The equation	on to the line AC so that AB
	= AC, is	
	(a) $52x + 89y + 519 = 0$	(b) $52x + 89y - 519 = 0$
	(c) $89x + 52y + 519 = 0$	(d) $89x + 52y - 519 = 0$
104	-	e drawn through the point
104.		f intersection with the line
	-	
	$x + y = 4$ is at a distance $\frac{\sqrt{3}}{3}$	$\frac{6}{3}$ from the given point
	(a) 30°	(b) 45°
	(c) 60°	(d) 75°
105.		
		nclude an angle $\pi/4$
	5	neet the straight line
		ame point, then the value
	of $a^2 + b^2$ is equal to	(h) 0
	(a) 1	(b) 2 (d) 4
104	(c) 3	· · /
100.	are all	rix, the diagonal elements
	(a) Different from each oth	or
	(b) Zero	
	(c) One	
5	(d) None of these	
107.	If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 - \lambda N$	$I - I_2 = 0$, then $\lambda =$
	(a) - 2 (c) - 4	(b) 2 (d) 4
108.	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and	$B = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \rho & \cos \rho \end{bmatrix}$, then
		$\begin{bmatrix} \sin \beta & \cos \beta \end{bmatrix}$
	the correct relation is	
	(a) $A^2 = B^2$	(b) $A + B = B - A$
	(c) $AB = BA$	(d) None of these
109.		ne following determinant
	a + x a - x a - x	- X
	equation, $\begin{vmatrix} a + x & a - x & a - a \\ a - x & a + x & a - a \\ a - x & a - x & a + a \end{vmatrix}$	-x = 0 are
		- X
	(a) $x = 0, x = 4a$	(b) $x = 0, x = a$
	(c) $x = 0, x = 2a$	(d) $x = 0, x = 3a$
	x - 1 3 0	
110.	If $\begin{vmatrix} x-1 & 3 & 0 \\ 2 & x-3 & 4 \\ 3 & 5 & 6 \end{vmatrix} = 0$, the	n <i>x</i> =
	3 5 6	
	(a) 0	(b) 2
	(c) 3	(d) 1

6

www.tarainstitute.in

111. The locus of a point whose difference of distance from points (3, 0) and (-3, 0) is 4, is

(a)
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 (b) $\frac{x^2}{5} - \frac{y^2}{4} = 1$
(c) $\frac{x^2}{2} - \frac{y^2}{3} = 1$ (d) $\frac{x^2}{3} - \frac{y^2}{2} = 1$

- **112.** Locus of centroid of the triangle whose vertices are (*a* cos *t*, *a* sin *t*), (*b* sin *t*,-*b* cos *t*) and (1, 0), where *t* is a parameter; is
 - (a) $(3x-1)^2 + (3y)^2 = a^2 b^2$
 - (b) $(3x-1)^2 + (3y)^2 = a^2 + b^2$
 - (c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$
 - (d) $(3x+1)^2 + (3y)^2 = a^2 b^2$
- **113.** If the distance of any point *P* from the point A(a+b, a-b) and B(a-b, a+b) are equal, then the locus of *P* is
 - (a) x y = 0 (b) ax + by = 0
 - (c) bx ay = 0 (d) x + y = 0
- **114.** What is the equation of the locus of a point which moves such that 4 times its distance from the *x*-axis is the square of its distance from the origin

(a)
$$x^2 + y^2 - 4y = 0$$
 (b) $x^2 + y^2 - 4 |y| = 0$

(c)
$$x^2 + y^2 - 4x = 0$$
 (d) $x^2 + y^2 - 4 |x| = 0$

- **115.** Let *P* be the point (1, 0) and *Q* a point of the locus $y^2 = 8x$. The locus of mid point of *PQ* is
 - (a) $x^2 + 4y + 2 = 0$ (b) $x^2 - 4y + 2 = 0$ (c) $y^2 - 4x + 2 = 0$ (d) $y^2 + 4x + 2 = 0$

116. The value of $\int \frac{x^3}{\sqrt{1+x^4}} dx$ is

- (a) $(1 + x^4)^{\frac{1}{2}} + c$ (b) $-(1 + x^4)^{\frac{1}{2}} + c$ (c) $\frac{1}{2}(1 + x^4)^{\frac{1}{2}} + c$ (d) $-\frac{1}{2}(1 + x^4)^{\frac{1}{2}} + c$
- **117.** What is the value of the integral $I = \int \frac{dx}{(1 + e^x)(1 + e^{-x})}$

(a)	$\frac{-1}{1+e^x}$	(b) $\frac{e^x}{1+e^x}$
(c)	$\frac{1}{1+e^x}$	(d) None of these

- **118.** The area bounded by the curves y = |x| 1 and y = -|x| + 1 is
 - (a) 1 (b) 2
 - (c) $2\sqrt{2}$ (d) 4

119. The volume of spherical cap of height *h* cut off from a sphere of radius *a* is equal to

(a)
$$\frac{\pi}{3}h^2(3a-h)$$
 (b) $\pi(a-h)(2a^2-h^2-ah)$
(c) $\frac{4\pi}{3}h^3$ (d) None of these
120. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$ is

(a)
$$\pi^2/4$$
 (b) π^2
(c) 0 (d) $\pi/2$

* *

= 🗮 TARA

